← Back to Directory List

Erin Green

Assoc Prof

Biological Sciences

Biological Sciences 325

Education

Postdoctoral Fellowship Stanford University 2013

Ph D University of California, Berkeley 2007

BA Bryn Mawr College 2000

Research Interests

Research in our lab aims to understand how post-translational modifications of proteins direct epigenetic and cellular signaling pathways to regulate key biological functions, including the establishment of proper states of gene expression and the ability of cells to respond to stress. Histones, the primary protein component of chromatin, are subject to many types of post-translational modification, including acetylation, phosphorylation and methylation. These modifications are critical to controlling the accessibility of DNA during essential processes such as transcription and DNA repair.

We are specifically interested in methylation of histone lysine residues, a modification system that has been well-established to regulate chromatin structure and function. Aberrant regulation of histone lysine methylation leads to the disruption of chromatin homeostasis and has been implicated in numerous human pathologies, including tumorigenesis. There remain many unanswered questions regarding the functional and mechanistic details of both canonical and novel sites of histone methylation. Additionally, the existence of non-histone protein methylation is emerging as a key regulator of nuclear signaling pathways, but the extent and function of these methylation events are largely unknown.

Our primary research objectives are to (1) identify new mechanisms of chromatin regulation mediated by novel histone methylation events and (2) develop a comprehensive understanding of lysine methylation as a broad regulator of nuclear signaling pathways. We use budding yeast as a model system, integrating molecular biology, genetics, biochemistry, genomics and proteomics. The evolutionary conservation of many of the players involved in lysine methylation signaling allows our work to be broadly applicable to higher eukaryotes, and will provide insight in to the role of these factors in diverse human diseases.

Selected Classes

  • Fall 2016 BIOL 303 – Cell Biology
  • Fall 2015 BIOL 426 – Appr To Molecular Biol

Contracts, Fellowships, Grants, and Sponsored Research

Green, Erin M. “Lysine methylation at chromatin and cellular responses to stress,” Grant (Not Funded). Sponsored By: National Institutes of Health.

Green, Erin M. “The SMYD lysine methyltransferase Set6 in proteostasis and signaling,” Grant (Currently Under Review). Sponsored By: National Institutes of Health.

Green, Erin M. “The SMYD lysine methyltransferase Set6 in proteostasis and signaling,” Grant (Not Funded). Sponsored By: National Institutes of Health.

Green, Erin M. “Mechanisms of chromatin homeostasis at telomeres mediated by histone lysine methyltransferases,” Grant (Funded). Sponsored By: National Institutes of Health (NIA). (Jan 1, 2016 – Dec 31, 2016).

Green, Erin M. “Lysine methylation at chromatin and cellular responses to stress,” Grant (Funded). Sponsored By: National Institutes of Health. (Jul 1, 2017 – Jun 30, 2022).

Green, Erin M. “The SMYD lysine methyltransferase Set6 in proteostasis and signaling,” Grant (Funded). Sponsored By: National Institutes of Health. (Aug 1, 2019 – Mar 31, 2021).

Intellectual Contributions

Jezek, Meagan, Sun, Winny, Negesse, Maraki Y., Smith, Zachary, Orosz, Alexander, Green, Erin M. (2023). Set1 regulates telomere function via H3K4 methylation-dependent and -independent pathways and calibrates the abundance of telomere maintenance factors. 34 ar6 Molecular Biology of the Cell.

Jethmalani, Y, Green, Erin M. (2020). Using yeast to define the regulatory role of protein methylation.. Current protein & peptide science.

Jaiswal, DEEPIKA, Turniansky, R, Moresco, J J., Ikram, S, Ramaprasad, G, Akinwole, A, Wolf, Julia B., Yates, 3rd, J R., Green, Erin M. (2020). Function of the MYND Domain and C-Terminal Region in Regulating the Subcellular Localization and Catalytic Activity of the SMYD Family Lysine Methyltransferase Set5.. 2. 40 Molecular and cellular biology.

Tran, K, Green, Erin M. (2019). SET domains and stress: uncovering new functions for yeast Set4.. Current genetics.

Jezek, M, Green, Erin M. (2019). Histone Modifications and the Maintenance of Telomere Integrity.. 2. 8 Cells.

Tran, K, Green, Erin M. (2019). Assessing Yeast Cell Survival Following Hydrogen Peroxide Exposure.. 2. 9 Bio-protocol.

Tran, K, Jethmalani, Y, Jaiswal, DEEPIKA, Green, Erin M. (2018). Set4 is a chromatin-associated protein, promotes survival during oxidative stress, and regulates stress response genes in yeast.. 37. 293 14429-14443 The Journal of biological chemistry.

Jezek, M, Jacques, A, Jaiswal, DEEPIKA, Green, Erin M. (2017). Chromatin Immunoprecipitation (ChIP) of Histone Modifications from Saccharomyces cerevisiae.. 130. Journal of visualized experiments : JoVE.

Jaiswal, DEEPIKA, Jezek, M, Quijote, J, Lum, J, Choi, G, Kulkarni, R, Park, DoHwan, Green, Erin M. (2017). Repression of Middle Sporulation Genes in Saccharomyces cerevisiae by the Sum1-Rfm1-Hst1 Complex Is Maintained by Set1 and H3K4 Methylation.. 12. 7 3971-3982 G3 (Bethesda, Md.).

Jaiswal, DEEPIKA, Turniansky, R, Green, Erin M. (2017). Choose Your Own Adventure: The Role of Histone Modifications in Yeast Cell Fate.. 429 1946-1957 Journal of molecular biology.

Jezek, M, Gast, Alison Kristin., Choi, G, Kulkarni, R, Quijote, J, Graham-Yooll, A, Park, DoHwan, Green, Erin M. (2017). The histone methyltransferases Set5 and Set1 have overlapping functions in gene silencing and telomere maintenance.. 2. 12 93-104 Epigenetics.

Martín, G M., King, D A., Green, Erin M., Garcia-Nieto, P E., Alexander, R, Collins, S R., Krogan, N J., Gozani, O P., Morrison, A J. (2014). Set5 and Set1 cooperate to repress gene expression at telomeres and retrotransposons.. 4. 9 Epigenetics.

Carlson, S M., Moore, K E., Green, Erin M., Martín, G M., Gozani, O. (2014). Proteome-wide enrichment of proteins modified by lysine methylation.. 1. 9 37-50 Nature protocols.

Green, Erin M., Morrison, A J., Gozani, O. (2012). New marks on the block: Set5 methylates H4 lysines 5, 8 and 12.. 4. 3 335-9 Nucleus (Austin, Tex.).

Green, Erin M., Jiang, Y, Joyner, R, Weis, K. (2012). A negative feedback loop at the nuclear periphery regulates GAL gene expression.. 7. 23 1367-75 Molecular biology of the cell.

Green, Erin M., Mas, G, Young, N L., Garcia, B A., Gozani, O. (2012). Methylation of H4 lysines 5, 8 and 12 by yeast Set5 calibrates chromatin stress responses.. 3. 19 361-3 Nature structural & molecular biology.

da Lopes Rosa, J, Holik, J, Green, Erin M., Rando, O J., Kaufman, P D. (2011). Overlapping regulation of CenH3 localization and histone H3 turnover by CAF-1 and HIR proteins in Saccharomyces cerevisiae.. 1. 187 9-19 Genetics.

Greer, E L., Maures, T J., Hauswirth, A G., Green, Erin M., Leeman, D S., Maro, G S., Han, S, Banko, M R., Gozani, O, Brunet, A. (2010). Members of the H3K4 trimethylation complex regulate lifespan in a germline-dependent manner in C. elegans.. 7304. 466 383-7 Nature.

Green, Erin M., Antczak, A J., Bailey, A O., Franco, A A., Wu, K J., Yates, 3rd, J R., Kaufman, P D. (2005). Replication-independent histone deposition by the HIR complex and Asf1.. 22. 15 2044-9 Current biology : CB.

Research In Progress

Green, Erin M., Jaiswal, Deepika, Ikram, Sabeen, Sun, Winny, Jezek, Meagan, Negesse, Maraki. “Lysine methylation signaling and stress responses,” Scholarly (On-Going). Sep 1, 2013