Molecular Biology & Genetics

Molecular Biology and Genetics seek to understand how the molecules that make up cells determine the behavior of living things. Biologists use molecular and genetic tools to study the function of those molecules in the complex milieu of the living cell. Groups in our department are using these approaches to study a wide variety of questions, including the fundamental processes of transcription and translation, mechanisms of global gene control including signal transduction pathways, the function of the visual and olfactory systems, and the nature of genetic diversity in natural populations and how that affects their evolution, among others. The systems under study cover the range of model organisms (bacteria, yeast, slime molds, worms, fruit flies, zebrafish, and mice) though the results of these studies relate directly or indirectly to human health.

Faculty with Interest in Molecular Biology and Genetics:

Bieberich, Charles
We are developing new transgenic mouse models of human prostate cancer.

Blumberg, Daphne
We use the methods of Molecular Biology and Genetics to identify and study genes involved in cell fate specification and developmental morphogenesis

Brewster, Rachel
We are investigating the regulation of brain development and metabolism. These studies are expected to contribute to the prevention of neural tube birth defects and the treatment of stroke.

Bustos, Mauricio
We investigate the role of ubiquitin/proteasome mediated protein degradation in transcription and the regulation of gene expression in eukaryotes

Craig, Nessly
Mechanism of mammalian ribosomal RNA synthesis and its regulation.

Eisenmann, David
We study the role of the Wnt signaling pathway in controlling cell fate decisions during C. elegans development. We also study regulation and function of the Hox gene lin-39 in C. elegans.

Erill, Ivan
Cross-linking between experimental assays and in-silico data for regulatory elements.

Farabaugh, Philip
Molecular genetics of translational accuracy in the yeast Saccharomyces cerevisiae and bacterium Escherichia coli.

Gardner, Jeffrey
Studying bacterial physiology using systems and synthetic biology; Determining how microbes sense the environment and obtain energy examining the mechanisms of plant cell wall degradation in bacteria.

Leips, Jeff
Genetic mapping of quantitative traits, association mapping to identify the effects of natural polymorphism in candidate genes on phenotypic variation.

Lindahl, Lasse
Genetic, biochemical, and phylogenetic approaches to understanding the synthesis, structure, and function of ribosomes in bacteria and yeast.

Lu, Hua
Characterizing function of genes regulating plant innate immunity and dissecting defense signaling networks.

Mendelson, Tamra
Molecular phylogenetic systematics; phylogenetic reconstruction of gene families.

Miller, Stephen
Identification and characterization of transposons for tagging important developmental loci in Volvox carteri.

Ostrand-Rosenberg, Suzanne
Tumor immunology; molecular and genetic regulation of tumor-induced immunosuppressive cells.

Robinson, Phyllis
My research program uses the techniques of molecular biology to explore structure function relationships of visual pigments.

Schreier, Harold
Molecular microbial ecology, physiology and genetics.

Starz-Gaiano, Michelle
We use loss-of-function and gain-of-function genetic strategies in Drosophila to identify new genes involved in cell migration, and to better understand molecular pathways required for cell movement.

Wolf, Jr., Richard E.
Investigation of a new mechanism of transcription activation in the bacterium E. coli and investigation of a new mechanism of induction.

Zengel, Janice
Genetic, biochemical, and phylogenetic approaches to understanding the synthesis, structure, and function of ribosomes in bacteria and yeast.